BioDT

Introduction and Objectives

BioDT Project Management Office
Project name: Biodiversity Digital Twin for Advanced Modelling, Simulation and Prediction Capabilities (BioDT)

Call title: Next generation of scientific instrumentation, tools and methods (HORIZON-INFRA-2021-TECH-01)

Duration: 1 June 2022 – 31 May 2025 (36 months)

Consortium: 22 partners

- Experts in biodiversity, high-performance computing, artificial intelligence, digital twinning and FAIR data
- Partners from 12 countries: Finland (FI), Italy (IT), Czech Republic (CZ), the Netherlands (NL), Estonia (EE), Sweden (SE), United Kingdom (UK), Germany (DE), Austria (AT), Denmark (DK), Norway (NO), Spain (ES)
 - Incl. one Affiliated Entity and three Associated Partners

Work Package (WP) members: 140+

Coordinator: CSC – IT Center for Science

Website: www.biodt.eu
OBJECTIVE 1:

- Build and deploy a pre-operational BioDT for addressing biodiversity dynamics

OBJECTIVE 2:

- Support the interoperability of data and services through the integration of the BioDT with research infrastructure platforms and workflows

OBJECTIVE 3:

- Ensure interoperability of BioDT with Destination Earth and the European Data Infrastructure
1: Pre-operational BioDT platform

- Platform established on LUMI
- Case studies for model development
- Model development¹ and validation
- Serving user needs beyond the project consortium

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prototype available as service</td>
</tr>
<tr>
<td>2</td>
<td>Several case studies</td>
</tr>
<tr>
<td>3</td>
<td>Improved model predictive performance</td>
</tr>
<tr>
<td>4</td>
<td>Increased model accuracy and precision</td>
</tr>
</tbody>
</table>

¹ Incl. upscaling for HPC, features for interactive use
2: Integration with RIs

- Application programming interfaces (APIs), user authentication and access
- Interoperability: data, software, practices
- Uptake by research communities, new user communities, training

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>APIs for feeding data to BioDT platform</td>
</tr>
<tr>
<td>2</td>
<td>FAIR datasets using cross-RI standards and FDOs</td>
</tr>
<tr>
<td>3</td>
<td>Quality indicators, e.g. FAIRness assessment metrics, geographic accuracy</td>
</tr>
<tr>
<td>4</td>
<td>Training materials and interoperability workshops</td>
</tr>
<tr>
<td>5</td>
<td>Improved modelling, simulation and prediction capabilities for RIs</td>
</tr>
</tbody>
</table>
3: Interoperability with DT initiatives (incl. DestinE) and EDI

- Cross-DT synchronisation and showcases
- EOSC data integration, openly available results
- Showcases for interaction between the BioDT and other DTs
- Harmonised data and data governance ([EU Data Spaces](https://data.europa.eu/8json/))

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BioDT data outputs to DestinE data lakes</td>
</tr>
<tr>
<td>2</td>
<td>Interfaces and data integration for interaction with EOSC</td>
</tr>
<tr>
<td>3</td>
<td>Integration of DestinE output data for use by BioDT</td>
</tr>
<tr>
<td>4</td>
<td>Synchronisation with other DT initiatives (e.g. Ocean DT)</td>
</tr>
</tbody>
</table>
The BioDT prototype Digital Twins (pDTs) are divided into four main groups focusing on:

1. **Species response to environmental change**
 - Biodiversity dynamics
 - Ecosystem services

2. **Genetically detected biodiversity**
 - Crop wild relatives and genetic resources for food security
 - DNA detected biodiversity, poorly known habitats

3. **Dynamics and threats from and for species of policy concern**
 - Invasive species

4. **Species interactions with each other and with humans**
 - Disease outbreaks
 - Pollinators
Research Infrastructures

Data from four RIs
GBIF, eLTER, LifeWatch ERIC and DISSCo

<table>
<thead>
<tr>
<th>GBIF</th>
<th>The Global Biodiversity Information Facility (GBIF) is an international network and data infrastructure providing open access to biodiversity data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBIF</td>
<td>![GBIF Logo]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eLTER</th>
<th>The Integrated European Long-Term Ecosystem (eLTER) focuses on critical zone and socio-ecological research.</th>
</tr>
</thead>
<tbody>
<tr>
<td>eLTER</td>
<td>![eLTER Logo]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LifeWatch ERIC</th>
<th>LifeWatch ERIC is the e-Science European infrastructure for biodiversity & ecosystem research.</th>
</tr>
</thead>
<tbody>
<tr>
<td>![LifeWatch ERIC Logo]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DiSSCo</th>
<th>The Distributed System of Scientific Collections (DiSSCo) is a Research Infrastructure (RI) for Natural Science Collections.</th>
</tr>
</thead>
<tbody>
<tr>
<td>![DiSSCo Logo]</td>
<td></td>
</tr>
</tbody>
</table>

- Helmholtz Center for Environmental Research (UFZ), UK Centre of Ecology & Hydrology (UKCEH), Environment Agency Austria (EAA) and University of Helsinki (UH)
- Naturalis Biodiversity Center (Naturalis) and Senckenberg Society for Nature Research (SGN)
Leveraging high-performance computing, AI and data analytics capabilities of the LUMI supercomputer

- LUMI is the 3rd fastest supercomputer in the world
- Sustained performance: 375 petaflop/s = performs 375×10^{15} calculations per second
- Computing power equals to the capacity of 1.5 million modern laptops
Digital twins require platforms for **computational simulation**

- Detailed and realistic simulations require large amounts of computing time

Digital Twin Advanced Technical Platform

- HPC resources from the LUMI EuroHPC computing facility
- Ensuring portability of digital twins across HPC sites and cloud environments
- Maintaining service catalogue of shared services for integration with EOSC Core services
BioDT Target Groups

Biodiversity RIs, RI nodes, data providers and researchers
RIs, universities, research organisations; the end-users that will contribute to developing the DT, enhancing its use cases, and testing its functionalities

Policy makers
EU, Member States, local governments, intergovernmental organisations (UNESCO, FAO, etc.)

Industrial actors incl. SMEs
Sectors related to biodiversity, such as agri-food, tourism, healthcare

Civil society and citizen scientists
Benefits

Researchers will be able to:
- Better observe changes in biodiversity in response to forces resulting from climate change or human activity
- Mechanistically understand how these changes occur
- Predict the effects of these changes

Biodiversity RIs will be able to:
- Improve their services

Policy makers will be able to:
- Make decisions based on quality data and modelling
- Better respond to societal needs and key initiatives

Industrial actors incl. SMEs will be able to:
- Exploit BioDT for business solutions (applications/products) in sectors related to biodiversity, such as agri-food, tourism and healthcare

Citizen scientists and civil society:
- Boost citizen science
- Strengthen common understanding of biodiversity dynamics and prediction models
- Foster biodiversity literacy and trust in biodiversity research